HullBreach Studios Ltd.
Home
Contact
Resources
HBS Labs

ML Image Identifier

ML Image ID
App Store

iPad™ (2nd Gen+)
iPhone™ (4S+)
iPod Touch™ (5G+)
Apple Watch (series 0+)
- General release April 2013

FEATURES:

ML Image Identifier is an educational app that allows your iOS device to identify images in real-time, as you move the camera around your environment. It can scan for 3 categories of images ("Objects", "Cars", and "Food") and recognize "Text" (character boxes, OCR) and "People" (facial landmarks, upper bodies, facial segmentation, depth map). The app automatically throttles the image processing to work on older devices. For the categorized images, the app displays the top-5 predicted matches, based on the neural networks' confidence levels as percentages.

BACKGROUND:

Once merely a subject of science-fiction, machine learning has permeated our lives in recent decades. We see it in numerous uses, such as handwriting recognition, facial recognition, image tagging, AI in games, targeted advertisements, predictive typing, and many automated tasks. Social networks are free because the data you provide (e.g. posts, surveys, photos, etc.) can be valuable for numerous purposes, turning the users into the products to sell. In short: Knowledge is power. With the release of iOS 11, Apple brought machine learning to the masses with CoreML, making it possible to run neural networks and other ML-related tools via hardware acceleration on any iOS device. Each subsequent iOS version added to the featureset. This app is a demonstration of some possibilities - and some deficiencies - of machine learning. Modeling a neural network is only one part of the task. For a ML model to work, it must be fed massive amounts of test data, similarly to how it takes a living creature numerous stimuli to learn. Good test data can yield good results; poor test data can yield poor results. Sometimes, biases of those creating the tests can come into play, since they may unknowingly weigh certain test values over others.

SPECIFICS:

ML Image Identifier makes use of 3 ML models (all MIT- or Apache- licensed) and Apple's own Vision framework to serve as examples: